ΔΙΑΛΕΞΗ 7

  • Δύο από τους βασικούς τύπους μεταφοράς
  • Σχετική ομιλία Nobel (Roderick MacKinnon)

https://www.nobelprize.org/mediaplayer/?id=550

  • To μοντέλο πίεσης-ροής
  • Μνημονικό κόλπο για να θυμάστε τα απαραίτητα στοιχεία

C. Hopkins Cafe closing; mob coming with machine guns” or in symbolic form –

C HOPKNS CaFe ClZn; MoB CuMn Mg

ΕΠΙΠΛΕΟΝ ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΗΓΕΣ

Baker, D.A., and Hall, J.L. (1988). Solute Transport in Plant Cells and
Tissues. (Essex UK: Longman Scientific and Technical).
Blatt, M.R., ed (2004). Membrane Transport in Plants. Annual Plant
Reviews, Vol. 15. (Oxford, UK: CRC Press).
Blatt, M.R. (2008). Ion Transport at the Plant Plasma Membrane.
Encyclopedia of Life Sciences. (Chichester, UK: John Wiley & Sons).
doi:10.1002/9780470015902.a0001307.pub2.
Epstein, E., and Bloom, A.J. (2005). Mineral Nutrition of Plants: Principles
and Perspectives, 2nd ed. (Sunderland, MA: Sinauer Associates).
Marschner, H. (2012). Mineral Nutrition of Higher Plants. (London:
Academic Press).
Yeo, A.R., and Flowers, T.J. (2007). Plant Solute Transport. (Oxford,
UK: Blackwell Publishing).

Cakmak, I. (2002). Plant nutrition research: Priorities to meet human
needs for food in sustainable ways. Plant Soil 247: 3–24. doi:10.1023/
A:1021194511492.
Epstein, E., and Bloom, A.J. (2005). Mineral Nutrition of Plants: Principles
and Perspectives, 2nd ed. (Sunderland, MA: Sinauer Associates).
Eshel, A., and Beeckman, T. (2013). Plant Roots: The Hidden Half, 4th
ed. (Boca Raton, FL: Taylor and Francis Group).
Fixen, P.E., and Johnston, A.M. (2012). World fertilizer nutrient
reserves: a view to the future. J. Sci. Food Agric. 92: 1001–1005.
doi:10.1002/jsfa.4532.
IUSS Working Group WRB (2014). World Reference Base for Soil
Resources 2014. International Soil Classification System for Naming
Soils and Creating Legends for Soil Maps, 3rd ed. (Rome: FAO).
http://www.fao.org/3/a-i3794e.pdf.
Lawes, J.B., and Gilbert, J.H. (1895). The Rothamsted Experiments.
(Edinburgh, UK: William Blackwood and Sons). http://www.
biodiversitylibrary.org/item/73274#page/7/mode/1up.
Liebig, J. (1841). Organic Chemistry in its Applications to Agriculture and
Physiology. (Cambridge, UK: John Owen). http://www.biodiversitylibrary.
org/item/90427#page/9/mode/1up.
Marschner, P., ed (2012). Marschner’s Mineral Nutrition of Higher
Plants, 3rd ed. (London: Academic Press).
Scholes, M.C., and Scholes, R.J. (2013). Ecology. Dust unto dust.
Science 342: 565–566. doi:10.1126/science.1244579.
Sutton, M.A., et al. (2013). Our Nutrient World: The challenge to
produce more food and energy with less pollution. Global Overview of
Nutrient Management. Centre for Ecology and Hydrology, Edinburgh
on behalf of the Global Partnership on Nutrient Management and

the International Nitrogen Initiative. http://www.gpa.unep.org/index.
php/global-partnership-on-nutrient-management/publications-andresources/global-partnership-on-nutrient-management-gpnm/377-
our-nutrient-world-1.
White, P.J., and Brown, P.H. (2010). Plant nutrition for sustainable
development and global health. Ann. Bot. (Lond.) 105: 1073–1080.
doi:10.1093/aob/mcq085.
Woodward, J. (1699). Some thoughts and experiments concerning
vegetation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 21: 193–227.

Aibara, I., and Miwa, K. (2014). Strategies for optimization of mineral
nutrient transport in plants: multilevel regulation of nutrient-dependent
dynamics of root architecture and transporter activity. Plant Cell
Physiol. 55: 2027–2036. doi:10.1093/pcp/pcu156.
Anjum, N.A., Singh, H.P., Khan, M.I., Masood, A., Per, T.S., Negi, A.,
Batish, D.R., Khan, N.A., Duarte, A.C., Pereira, E., and Ahmad, I.
(2015). Too much is bad—an appraisal of phytotoxicity of elevated plantbeneficial heavy metal ions. Environ. Sci. Pollut. Res. Int. 22: 3361–3382.
doi:10.1007/s11356-014-3849-9.
Baxter, I. (2009). Ionomics: studying the social network of mineral nutrients.
Curr. Opin. Plant Biol. 12: 381–386. doi:10.1016/j.pbi.2009.05.002.
Blaby-Haas, C.E., and Merchant, S.S. (2012). The ins and outs of algal
metal transport. Biochim. Biophys. Acta 1823: 1531–1552. doi:10.
1016/j.bbamcr.2012.04.010.
Cobbett, C., and Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.
Annu. Rev. Plant Biol. 53: 159–182. doi:10.1146/annurev.arplant.53.
100301.135154.
DalCorso, G., Manara, A., and Furini, A. (2013). An overview of heavy metal
challenge in plants: from roots to shoots. Metallomics 5: 1117–1132.
doi:10.1039/c3mt00038a.
DalCorso, G., Manara, A., Piasentin, S., and Furini, A. (2014). Nutrient
metal elements in plants. Metallomics 6: 1770–1788. doi:10.1039/
C4MT00173G.
Fourcroy, P., Siso´ -Terraza, P., Sudre, D., Saviro´ n, M., Reyt, G.,
Gaymard, F., Abadı´a, A., Abadia, J., Alvarez-Ferna´ndez, A., and
Briat, J.-F. (2014). Involvement of the ABCG37 transporter in secretion of
scopoletin and derivatives by Arabidopsis roots in response to iron
deficiency. New Phytol. 201: 155–167. doi:10.1111/nph.12471.
Grotz, N., and Guerinot, M.L. (2006). Molecular aspects of Cu, Fe and
Zn homeostasis in plants. Biochim. Biophys. Acta 1763: 595–608.
doi:10.1016/j.bbamcr.2006.05.014.
Gruber, B.D., Giehl, R.F.H., Friedel, S., and von Wire´ n, N. (2013).
Plasticity of the Arabidopsis root system under nutrient deficiencies.
Plant Physiol. 163: 161–179. doi:10.1104/pp.113.218453.
Guerinot, M.L. (2000). The ZIP family of metal transporters. Biochim.
Biophys. Acta 1465: 190–198. doi:10.1016/S0005-2736(00)00138-3.
Gustin, J.L., Zanis, M.J., and Salt, D.E. (2011). Structure and evolution
of the plant cation diffusion facilitator family of ion transporters. BMC
Evol. Biol. 11: 76. doi:10.1186/1471-2148-11-76.
Ha¨ nsch, R., and Mendel, R.R. (2009). Physiological functions of mineral
micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol.
12: 259–266. doi:10.1016/j.pbi.2009.05.006.
Haydon, M.J., and Cobbett, C.S. (2007). Transporters of ligands for
essential metal ions in plants. New Phytol. 174: 499–506. doi:10.1111/
j.1469-8137.2007.02051.x.
Jones, O.A.H., Dias, D.A., Callahan, D.L., Kouremenos, K.A., Beale,
D.J., and Roessner, U. (2015). The use of metabolomics in the study
of metals in biological systems. Metallomics 7: 29–38. doi:10.1039/
C4MT00123K.
Klair, S., Bansal, S., Briat, J.F., Khodr, H., Shioiri, T., Leigh, R.A.,
Hider, R.C., Hider, R.C.; and von Wiren, N. (1999). Nicotianamine
chelates both FeIII and FeII. Implications for metal transport in plants.
Plant Physiol. 119: 1107–1114. doi:10.1104/pp.119.3.1107.
Kra¨mer, U., Talke, I.N., and Hanikenne, M. (2007). Transition metal
transport. FEBS Lett. 581: 2263–2272. doi:10.1016/j.febslet.2007.04.010.
Lemire, J.A., Harrison, J.J., and Turner, R.J. (2013). Antimicrobial
activity of metals: mechanisms, molecular targets and applications.
Nat. Rev. Microbiol. 11: 371–384. doi:10.1038/nrmicro3028.
Leszczyszyn, O.I., Imam, H.T., and Blindauer, C.A. (2013). Diversity
and distribution of plant metallothioneins: a review of structure,
properties and functions. Metallomics 5: 1146–1169. doi:10.1039/
c3mt00072a.
Luo, Z.-B., Wu, C., Zhang, C., Li, H., Lipka, U., and Polle, A. (2014).
The role of ectomycorrhizas in heavy metal stress tolerance of host
plants. Environ. Exp. Bot. 108: 47–62. doi:10.1016/j.envexpbot.2013.
10.018.
Merchant, S.S. (2010). The elements of plant micronutrients. Plant
Physiol. 154: 512–515. doi:10.1104/pp.110.161810.
Merchant, S.S., Allen, M.D., Kropat, J., Moseley, J.L., Long, J.C.,
Tottey, S., and Terauchi, A.M. (2006). Between a rock and a hard
place: trace element nutrition in Chlamydomonas. Biochim. Biophys.
Acta 1763: 578–594. doi:10.1016/j.bbamcr.2006.04.007.
Merchant, S.S., and Helmann, J.D. (2012). Elemental economy:
microbial strategies for optimizing growth in the face of nutrient
limitation. Adv. Microb. Physiol. 60: 91–210.
Milner, M.J., Seamon, J., Craft, E., and Kochian, L.V. (2013).
Transport properties of members of the ZIP family in plants and their
role in Zn and Mn homeostasis. J. Exp. Bot. 64: 369–381. doi:10.1093/
jxb/ers315.
Ovecˇka, M., and Taka´cˇ, T. (2014). Managing heavy metal toxicity stress in
plants: biological and biotechnological tools. Biotechnol. Adv. 32: 73–86.
doi:10.1016/j.biotechadv.2013.11.011.
Palmer, C.M., and Guerinot, M.L. (2009). Facing the challenges of Cu,
Fe and Zn homeostasis in plants. Nat. Chem. Biol. 5: 333–340.
doi:10.1038/nchembio.166.
Pilon, M., Ravet, K., and Tapken, W. (2011). The biogenesis and
physiological function of chloroplast superoxide dismutases. Biochim.
Biophys. Acta 1807: 989–998. doi:10.1016/j.bbabio.2010.11.002.
Peng, J.S., and Gong, J.M. (2014). Vacuolar sequestration capacity
and long-distance metal transport in plants. Front. Plant Sci. 5: 19.
Puig, S., and Pen˜arrubia, L. (2009). Placing metal micronutrients in context:
transport and distribution in plants. Curr. Opin. Plant Biol. 12: 299–306.
doi:10.1016/j.pbi.2009.04.008.
Rella´n-Alvarez, R., Abadı´a, J., and Alvarez-Ferna´ndez, A. (2008).
Formation of metal-nicotianamine complexes as affected by pH, ligand
exchange with citrate and metal exchange. A study by electrospray
ionization time-of-flight mass spectrometry. Rapid Commun. Mass
Spectrom. 22: 1553–1562. doi:10.1002/rcm.3523.
Ricachenevsky, F.K., Menguer, P.K., Sperotto, R.A., Williams, L.E.,
and Fett, J.P. (2013). Roles of plant metal tolerance proteins (MTP) in
metal storage and potential use in biofortification strategies. Front.
Plant Sci. 4: 144.
Schuler, M., Rella´ n-A´ lvarez, R., Fink-Straube, C., Abadı´a, J., and
Bauer, P. (2012). Nicotianamine functions in the phloem-based
transport of iron to sink organs, in pollen development and pollen
tube growth in Arabidopsis. Plant Cell 24: 2380–2400. doi:10.1105/
tpc.112.099077.
Tehseen, M., Cairns, N., Sherson, S., and Cobbett, C.S. (2010).
Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2:
556–564. doi:10.1039/c003484c.
Thapa, G., Sadhukhan, A., Panda, S.K., and Sahoo, L. (2012). Molecular
mechanistic model of plant heavy metal tolerance. Biometals 25: 489–505.
doi:10.1007/s10534-012-9541-y.
Verbruggen, N., Hermans, C., and Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181: 759–776.
doi:10.1111/j.1469-8137.2008.02748.x.
Viehweger, K. (2014). How plants cope with heavy metals. Bot. Stud.
55: 35. doi:10.1186/1999-3110-55-35.
Waldron, K.J., and Robinson, N.J. (2009). How do bacterial cells ensure
that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7: 25–35.
doi:10.1038/nrmicro2057.